

Implementing the Atanasoff-Berry
Computer With Modern

Technology
Design Document

sdmay25-29

Dr. Alexander Stoytchev

Connor Hand / Client Interaction and Team Organization

Zach Scurlock / Testing and Individual Component Design

Noah Butler / Testing and Individual Component Design

Peter Hurd / Testing and Individual Component Design / Budget Handling

William Mayer / Meeting Tracking and Note-Taking

sdmay25-29@iastate.edu

https://sdmay25-29.sd.ece.iastate.edu/

Executive Summary

The Atanasoff-Berry Computer (ABC) was the world’s first electronic digital computer, a milestone
in computational history. Our project seeks to recreate the ABC using modern technology to
preserve its educational and historical significance. The goal is to create a hands-on, interactive tool
that aids educators and students in understanding foundational computing principles while
honoring the historical importance of the original ABC. By providing a tangible example of early
computational logic, this project enhances educational outcomes and inspires a deeper appreciation
for the evolution of technology.

This project addresses the need for accessible tools that help bridge the gap between theoretical
concepts and practical understanding in computer engineering. Our recreated ABC must accurately
replicate the computational logic of the original while remaining user-friendly and interactive. To
achieve this, we are using integrated circuits (ICs) and breadboards while ensuring our design stays
true to the spirit of the original machine. Input will be managed through an Android-based
interface, emulating the ABC’s punch-card system while improving accessibility. Core subsystems,
such as the add-subtract mechanism, base converter, memory drums, and control system, are
designed to function with modern components, yet follow the logic of the original machine.

We have developed all the components of the ABC on breadboards. The breadboards were designed
modularly such that components can be removed and tested individually. We opted to place our
breadboards onto a sheet of plywood, using velcro, to have a consistent layout and be able to easily
transport our computer. The Android-based interface is complete and fully functional. Our Android
tablets communicate with ESP32s to control the input/output of the machine. The tablets are
mounted to the plywood using 3D-printed mounts.

Our design successfully balances historical accuracy with modern practicality, ensuring it meets the
needs of students, educators, and hobbyists. Our design utilizes LEDs to display calculations at
each step of the computing process, furthering the ease of understanding for students. Our
recreation not only revives the ABC’s legacy but also contributes to advancing the education of
future generations of computer engineers.

Learning Summary

Development Standards & Practices Used

● Circuit Practices:
○ Breadboarding for initial prototyping of circuits.
○ Use of ICs for implementing digital logic.
○ Modular breadboard design for final module assembly.
○ Adherence to proper grounding and signal integrity techniques during circuit

design.
● Hardware Practices:

○ Sourcing reliable and cost-effective components that are compliant with industry
standards.

○ Modular design to simplify testing and integration.
○ Compact design to fit within a typical educational workspace.

● Software Practices:
○ Use of version control for code and documentation.
○ Agile and waterfall hybrid project management for iterative development.

● Engineering Standards:
○ IEEE 1149.1: Standard for test logic in integrated circuits, ensuring valid

interconnections between ICs. [2]
○ IEEE 1481: Standard for analyzing chip metrics like timing and power consumption

during IC design. [3]
○ IEEE 1621: Standard for user interface elements in power control of electronic

devices. [4]
○ IEEE 1680: Standard for environmental assessment, focusing on sustainable

material use and energy efficiency. [5]

Summary of Requirements

● Our system must accurately replicate the functionality of the ABC using modern
technology.

● Our system must allow users to input data, view each step of the computation, and receive
output.

● The system should use modern components.
● The computer must be a physical, tangible object that users can interact with.
● The computer design should fit within a workspace suitable for educational

demonstrations.
● The user interface must be simple and intuitive.
● It must look cool.

Applicable Courses from Iowa State University Curriculum
● CPRE 281: Digital Logic
● CPRE 381: Computer Organization and Assembly Level Programming
● COMS 309: Software Development Practices
● COMS 227: Object-Oriented Programming
● COMS 228: Introduction to Data Structures
● EE 201: Electrical Circuits
● EE 230: Circuits and Systems in Electronics

New Skills/Knowledge acquired that was not taught in courses
● Arduino Coding
● EEPROM Programming
● Vacuum Tube Logic

Table of Contents
1. Introduction 8

1.1. PROBLEM STATEMENT 8
1.2. INTENDED USERS 8

2. Requirements, Constraints, And Standards 10
2.1. REQUIREMENTS & CONSTRAINTS 10
2.2. ENGINEERING STANDARDS 10

3. Project Plan 12
3.1 Project Management/Tracking Procedures 12
3.2 Task Decomposition 12
3.3 Project Proposed Milestones, Metrics, and Evaluation Criteria 13
3.4 Project Timeline/Schedule 14
3.5 Risks and Risk Management/Mitigation 15
3.6 Personnel Effort Requirements 16
3.7 Other Resource Requirements 17

4. Design 18
4.1 Design Context 18

4.1.1 Broader Context 18
4.1.2 Prior Work/Solutions 18
4.1.3 Technical Complexity 19

4.2 Design Exploration 21
4.2.1 Design Decisions 21
4.2.2 Ideation 21
4.2.3 Decision-Making and Trade-Off 22

4.3 Proposed Design 22
4.3.1 Overview 22
4.3.2 Detailed Design and Visual 24
4.3.3 Functionality 30
4.3.4 Areas of Challenge 30

4.4 Technology Considerations 30
5. Testing 32

5.1 Unit Testing 32
5.2 Interface Testing 32
5.3 Integration Testing 32
5.4 System Testing 32
5.5 Regression Testing 32
5.6 Acceptance Testing 32
5.7 User Testing 33
5.8 Results 33

6. Implementation 34
6.1 Design Analysis 46

7. Ethics and Professional Responsibility 47
7.1 Areas of Professional Responsibility/Codes of Ethics 47
7.2 Four Principles 48
7.3 Virtues 49

8. Conclusions 50
8.1 Summary of Progress 50
8.2 Value Provided 50
8.3 Next Steps 50

9. References 51
10. Appendices 52

Appendix 1 - Operation Manual 56
Appendix 2 - Initial Version of Design 58
Appendix 3 - Other Considerations 58
Appendix 4 - Code 58
Appendix 5 - Team Contract 59
Team Members 59
Required Skill Sets for Your Project 59
Skill Sets Covered by the Team 59
Project Management Style Adopted by the Team 59
Individual Project Management Roles 59
Team Contract 60

List of Figures

Figure Title Figure Description

Figure 1 Gantt Chart

Figure 2 Risk Management Chart

Figure 3 Personnel Effort Requirements Chart

Figure 4 Prior Works Compared to Our Project
Pros/Cons Table

Figure 5 Weighted Decision Matrix

Figure 6 Our ABC Design Block Diagram

Figure 7 Timing Module Digital Circuit

Figure 8 Memory Drums and ASM Muxes Digital
Circuits

Figure 9 Punch Card Input and Output Circuit

Figure 10 Base Conversion Circuit

Figure 11 ASM Circuit

Figure 12 Carry Drum Circuit

Figure 13 Functional Flow of Our ABC Recreation

Figure 14 Android Base-10 Punch Card App

Figure 15 Android Base-2 Write App

Figure 16 Android Base-2 Read App

Figure 17 Clock Generator

Figure 18 Timing Drum

Figure 19 Memory Drums

Figure 20 Base-2 Read/Write and Base-10 Write

Figure 21 Decimal to Binary Drum

Figure 22 Add/Sub Mechanism

Figure 23 Carry Drum

Figure 24 ABCGUI Frame

Figure 25 abc-emulator Project Structure

Figure 26 Areas of Professional Responsibility and Their
Relevance to Our Project

Figure 27 Broader Context Principle Pairs

Figure 28 Adder-Subtractor Module KiCad Schematic

Figure 29 Adder-Subtractor Module PCB Implementation
Render

Figure 30 KiCad Schematic for the Adder-Subtractor
Tester PCB

Figure 31 Adder-Subtractor Tester PCB Implementation
Render

Figure 32 Legend for abc-emulator Buttons and Switches

Figure 33 abc-emulator Control Panel

Figure 34 Odometer display for reading Base-10

1. Introduction

1.1. PROBLEM STATEMENT

Our project is to recreate the ABC computer from scratch using modern technology. Our goal is to
use the same logic that John Atanasoff used when developing the original ABC. We have designed
our computer purely based on the resources that exist on the ABC. Most resources are written, there
is a video from the 90s ABC reconstruction project, and we also used primary sources from people
who worked on the ABC reconstruction project in the 90s. The purpose of our ABC recreation is
educational, but also recreational. Most users will be students and professors in the pursuit of
education, but also, computer hobbyists may enjoy using our computer or learning about it. Our
project may benefit our society by creating more capable computer engineers. Our project is
open-source, so globally, our project can benefit other schools or hobbyists by providing detailed
documentation on how our ABC recreation works. Further educating computer engineering
students through our project is important because visually seeing a computer’s inner workings
could make a difference in a student’s success or even interest. Our computer is capable of
education because it will have physical displays or LEDs that show what our computer is doing at
that moment in time. Overall, our project could have a global impact on the education of students
in a computer engineering-related field.

1.2. INTENDED USERS

Computer Engineering Professor

1. The user is a professor in computer engineering, likely with in-depth expertise in
computational systems and logic. They are responsible for teaching complex
subjects, such as the architecture and function of computers, to students who may
be new to these concepts. They need to convey these topics in a simplified and
engaging way to help students understand.

2. Computer engineering professors need a way to demonstrate the function of a
simple, easy-to-understand computer to their students because it helps them
explain core computational concepts effectively.

3. The recreated ABC will serve as a tangible teaching tool, enabling professors to
visually demonstrate how computers perform calculations and execute operations.
This hands-on experience will make abstract concepts more concrete for students,
enhancing understanding. The value of this product is in its ability to simplify
complex ideas.

Computer Engineering Student

1. These users are students enrolled in computer engineering courses, often
motivated to understand how computers work at a foundational level. They may
have varying degrees of familiarity with computational logic and systems, but are
driven by their interest in technology and their desire to succeed academically.

2. Computer engineering students need to learn about computational logic to build
foundational knowledge in their courses and to succeed in the academic
environment.

3. Students will benefit from interacting with the recreated ABC because it provides a
real-world application of the theoretical knowledge they are learning in their
courses. By witnessing how a computer performs calculations, students will deepen
their understanding of computational logic, helping their academic progress.

Computer Hobbyist

1. This group consists of individuals with a personal interest in the history and
development of computer technology. They may not be formally involved in
academia or the computer industry, but they enjoy learning about how computers
evolved and the first computers in the field.

2. Computer hobbyists need to learn about the ABC because they are interested in
the history of computing technology.

3. hobbyists will find value in the project as it provides them with a tangible piece of
computing history that they can explore and understand. By seeing a modern
recreation of the first electronic digital computer, hobbyists can gain a deeper
appreciation for the technological advancements that have shaped modern
computing. This ties back to the project’s mission to educate and inspire through
historical recreation.

2. Requirements, Constraints, And Standards

2.1. REQUIREMENTS & CONSTRAINTS

Functional Requirements

1. The system must accurately replicate the functionality of the original Atanasoff-Berry
Computer (ABC) using modern technology.

2. The system should be able to solve different systems of linear equations as the ABC did,
using a similar computational logic.

3. The recreated computer must allow users to input data, view each step, and receive the
correct solution as output.

Resource Requirements

1. The system should use modern components such as integrated circuits and semiconductor
memory devices to emulate the original ABC.

2. Components must be sourced to align with IEEE 1149.1 and IEEE 1481 standards for testing
and efficiency (constraint). [2][3]

Physical Requirements

1. The computer must be a physical, tangible object that users can interact with directly.
2. The design should fit within a workspace suitable for educational demonstrations, not

exceeding typical desktop dimensions.
3. The system should visually display each step of the calculation process to enhance user

understanding.
4. It must look cool.

UI Requirements

1. The user interface must be simple and intuitive, with clear instructions for students and
hobbyists who may not be familiar with this type of background.

2. The interface should include visuals on how computations are completed.

2.2. ENGINEERING STANDARDS
Engineering standards are important because they ensure safety, reliability, and quality in everyday
products and processes. They provide a common framework for all parts of the manufacturing
process and guarantee collaboration across industries. Engineering standards help reduce errors
and costs and ultimately enhance consumer trust. It is important to stay in line with engineering
standards because they improve efficiency and help engineers maintain consistency in their work.

 IEEE 754:

The IEEE 754 standard specifies methods for performing binary and floating-point arithmetic. It
also specifies exception conditions and how they should be handled by default. This standard is
intended to provide a common method for computation with binary and floating-point numbers
that will yield the same result. This standard applies to computations being done directly through
hardware, or through software. [6]

IEEE 1149.1:

The IEEE 1149.1 standard defines test logic for integrated circuits that standardizes approaches to
multiple forms of testing. It provides a standard for testing interconnections between integrated
circuits (ICs) that have been connected on a breadboard. It also provides a standard for testing the
IC itself. This standard is intended to standardize the methods of testing ICs. [2]

IEEE 1481:

The IEEE 1481 standard defines methods for IC designers to analyze chip metrics. These metrics
include timing and power consumption. Methods by which IC designers can express these metrics
are also defined. This standard is intended to allow IC designers to more accurately and completely
analyze semiconductor designs while expressing them in a way that is understandable to other IC
designers. [3]

We believe IEEE 1149.1 and IEEE 1481 to have relevance to our project, but not IEEE 754. We believe
IEEE 1149.1 and 1481 will have relevance to our project due to our use of ICs. We need a way to
ensure that interconnections between ICs on our breadboards are valid, and we need to use the
timing and power information given to us by the IC designers when considering our design. IEEE
754 is not so relevant to our project because it defines the modern way of performing binary
arithmetic. Our project intends to use the same method of binary computation that was used on
the original ABC, which does not follow IEEE 754.

IEEE 1621:

Standard for User Interface Element in Power Control of Electronic Devices. This standard guides
the user interface designs’ power control. Since we want our modified ABC to turn on/off or manage
energy use, following this standard helps usability and consistency with other modern electronic
devices. [4]

IEEE 1680:

Standard for Environmental Assessment of Electronic Products. This standard is friendly as it
focuses on the environmental aspects of electronic products. Like recycling, energy efficiency, and
environmentally friendly materials. This standard helps our project be more sustainable. [5]

3. Project Plan

3.1 PROJECT MANAGEMENT/TRACKING PROCEDURES
Our project management style that we have adopted is a hybrid of the waterfall and agile approach.
Our project benefits from this approach because it allows us to work on different components at the
same time (agile), but within those components, the process is fairly linear (waterfall).

Our team tracks progress through the use of Discord and Github. Firstly, we use Discord as our
primary method of communication where we let each other know what we have completed and
what needs to be done next. Secondly, Github is used as our primary repository of files pertaining to
the project, such as documentation and KiCad files.

3.2 TASK DECOMPOSITION
1. Research Modules

1.1. Add-Subtract Mechanism
1.1.1. Look into modern approaches to replicate the ABC’s adder-subtractor

design.
1.2. I/O Methods

1.2.1. Study user interaction and techniques that keep the spirit of the ABC.
1.3. Base Converters

1.3.1. Analyze methods for data conversion to align with the ABC’s
requirements.

1.4. Drum Memory
1.4.1. Find out how the capacitor drums were used to store bits.

1.5. Control Unit
1.5.1. Design a modern equivalent of the control unit to manage data flow and

operational sequences.
2. Design Modules

2.1. Add-Subtract Mechanism
2.1.1. Build adder-subtractor circuit in modern terms.

2.2. I/O Methods
2.2.1. Create a design that supports input and output for user interactions.

2.3. Base Converters
2.3.1. Finalize the base converter design to accurately handle data

transformations.
2.4. Drum Memory

2.4.1. Design the memory in such a way that aligns with the original’s spinning
drum memory.

2.5. Control Unit
2.5.1. Define the unit’s layout and operational logic to work with all modules.

3. Build Prototypes / Test Designs
3.1. Add-Subtract Mechanism

3.1.1. Assemble and test the add-subtract functionality on a breadboard.
3.2. I/O Methods

3.2.1. Prototype the I/O system and evaluate user interaction and functionality.
3.3. Base Converters

3.3.1. Test the base converters’ accuracy and performance.
3.4. Drum Memory

3.4.1. Verify the functionality of the memory.
3.5. Control Unit

3.5.1. Prototype the control unit to ensure it successfully manages operations
and data flow.

4. Build Final Breadboards
4.1. Add-Subtract Mechanism
4.2. I/O Methods
4.3. Base Converters
4.4. Drum Memory
4.5. Control Unit
4.6. Assembly of Breadboards

4.6.1. Integrate all modules, creating a complete system.
5. Release Under Open-Source License

5.1. Document Progress
5.1.1. Comprehensive project documentation.

5.2. Release to Public
5.2.1. Allows educational and recreational use.

6. Final Deliverables
6.1. ABC Finished

6.1.1. All components are complete and meet functional and quality standards.
6.2. Released to the Public Under an Open-Source License

3.3 PROJECT PROPOSED MILESTONES, METRICS, AND EVALUATION CRITERIA
1. Research Modules

● Milestone: Completion of research for all core modules.
● Metric: Documentation of research findings for each module.
● Evaluation: Achieved if the documentation provides clear guidance for all phases.

2. Design Modules
● Milestone 1: Finalize design choices for each module.

○ Metric: Completion of design documents for all modules.
○ Evaluation: Consensus by the team for all design choices.

● Milestone 2: Review and revise designs based on feedback.
○ Metric: Documented revisions and final approach for each design.
○ Evaluation: Each Consensus by the team for all design choices.

3. Build Prototypes / Test Designs
● Milestone 1: Breadboard prototypes assembled for each module.

○ Metric: Prototypes assembled and tested for functionality.
○ Evaluation: Prototypes meet 95% success rate in functional tests with

adjustments.
● Milestone 2: Complete prototype testing for all modules.

○ Metric: Pass rate of at least 99% in functionality tests for each module.
○ Evaluation: Prototype achieves expected results.

4. Build Final Breadboards
● Milestone 1: Assemble breadboards with final design for each module.

○ Metric: Each circuit meets design specifications and functional tests.
○ Evaluation: Breadboard circuits pass functionality, compliance, and safety

tests, with adjustments documented as necessary.
● Milestone 2: Integrate modules into final breadboard assembly.

○ Metric: Fully integrated design meets performance and interconnection
standards.

○ Evaluation: Final integration passes compliance tests (IEEE 1149.1 for
testing interconnections), meeting all technical and functional
requirements. [2]

5. Release Under Open-Source License
● Milestone 1: Complete project documentation for public release.

○ Metric: Documentation is peer-reviewed and approved for clarity and
completeness.

○ Evaluation: Documentation meets open-source standards, making the
project accessible and understandable for external users.

6. Final Deliverables
● Milestone: Final quality check and project sign-off.

○ Metric: Final system meets all project specifications and passes final user
and performance tests.

○ Evaluation: Project receives final approval for completion and is available
under open-source, fulfilling educational and functional objectives.

3.4 PROJECT TIMELINE/SCHEDULE

Figure 1: Gantt Chart

Our project’s tasks will be performed in the following order: Research Modules, Design Modules,
Build and Test Modules, Build Final Breadboards, and Release Under Open-Source License. We
researched the different modules from September-February. We designed the modules one by one
after gathering enough information from October-April. We built prototypes and tested our designs
directly after finishing said designs, this phase spans from October to March. We built all of our
modules and our high-level module on breadboards after testing our designs, this happened from
November to May. We also documented our progress throughout the entire project, and we will
release it to the public in May. The final deliverables of our project are the working ABC
reconstruction, and that it is released under an open-source license. The ABC reconstruction was
finished in May, and we will soon release it to the public under an open-source license.

3.5 RISKS AND RISK MANAGEMENT/MITIGATION

Task Risks Mitigation Plan

Research Modules There is not enough
information for us to 100%
faithfully recreate a module.
Risk factor: 0.9

If there is a similar component
from that time period, we will use
it for inspiration and make our
own version of the module,
otherwise, we will use modern
techniques to achieve the same
goal as the original.

Design Modules Making a mistake while
designing.
Risk factor: 0.95

We have tools that are testing
our designs. If we design
something incorrectly, we can
test it, and then fix our error.

 We run out of time in the
school year to design all
modules of the ABC.
Risk factor: 0.05

Build Prototypes / Test
Designs

Making a mistake while
building a prototype.
Risk factor: 0.8

We will have debugging outputs
in our prototypes when
constructing them. If we make a
mistake while building a
prototype, we will be able to tell
what is wrong, and we will fix the
error.

 We run out of time in the
school year to build
prototypes of each module.
Risk factor: 0.1

Build Final Breadboards There is a malfunction in the
breadboard.
Risk factor: 0.2

 Our final design is incorrect
and does not function on the
final breadboard.
Risk factor: 0.3

 We run out of time in the
school year to build all final
breadboards..
Risk factor: 0.15

Start working harder. We will
provide enough
documentation for a future
team to create a complete
implementation.

Release Under Open-Source
License

We do not follow the
guidelines for releasing our
project under an open-source
license.
Risk factor: 0.1

Figure 2: Risk Management Chart

We ran into a few of these risks during our project. Information on the ABC was extremely hard to
come by, and as a result, we ended up making some of our own designs on modules that we could
not 100% faithfully recreate. One such example is when we were designing the base-10 punch card
interface. We were unsure how exactly it was able to tell when a number was negative and we
decided to make an extra column of our punch card distinguish that fact. There were times where
our prototypes were non-functional. This was always remedied by looking over our circuit and
fixing any mistakes we made. Also, we risked running out of time to complete our final breadboard
implementation. As a result, we upped our man-hours and worked extra hard to complete it.

3.6 PERSONNEL EFFORT REQUIREMENTS

Task Details Estimated Hours Actual Hours

Research Modules Research the functionality
and implementation of the
modules

160 Hours 240 Hours

Design Modules Design modules of the ABC
based on our research and
understanding of how each
module should function.

200 Hours 200 Hours

Build Prototypes /
Test Designs

Build prototypes of
components on breadboards,
and test components
individually.

300 Hours 200 Hours

Build Final
Breadboard
Implementation

Build final implementation of
the ABC on breadboards.

250 Hours 350 Hours

Release Under
Open-Source License

Document the Process and
Release our Designs

50 Hours 50 Hours

Figure 3: Personnel Effort Requirements Chart

Originally, we believed researching the ABC would be easier. We learned that there aren’t many
sources covering the intricacies of the machine. As a result of this, we ended up spending a lot more
time researching than we thought we would. Building the prototypes did not take as long as we
originally thought. We were slowly running out of time to build our computer and decided to hold
back on the amount of prototyping we did. A few designs ended up going straight to our final

implementation. And finally, building the final implementation took longer than we thought it
would. It took a lot of effort and time to decide how to place all of the breadboards, and assemble
them all together. A lot of testing on the final implementation took place.

3.7 OTHER RESOURCE REQUIREMENTS
This project involves a myriad of different parts, materials, and other pieces that will be needed to
eventually realize all of the requirements and expectations. Since this project is very heavy on the
circuit design component, we will be using and recording an extensive parts library that will include
all integrated circuit chips, light-emitting diodes, resistors, capacitors, headers, and connectors we
will use throughout this project. Along with all those components, we will also make extensive use
of wiring materials and breadboards. Finally, our project contains a significant amount of lab time
that will require our attention to manage along with all the other facets to bring about our
successful completion of this project and this course.

4. Design

4.1 DESIGN CONTEXT

4.1.1 Broader Context

Our design problem exists in the context of education and historical preservation. Implementing
the Atanasoff-Berry Computer with modern technology will help connect students with the roots of
modern computing by allowing professors to use our design when teaching students about the
history of computers and digital logic. It will also benefit those who are simply interested in the
history of computing, as our design will be open-source and allow them to take a deep dive into the
innermost workings of our design.

Our project will affect the general well-being of students, professors, and those interested in the
history of computing by indirectly improving their intellectual welfare by fostering curiosity about
technology and engaging them in learning. Professors will be directly affected because they will
gain an educational tool. Students will be able to gain knowledge using a physical example designed
to help them learn. Those who are interested in the history of computers will also be affected
because they will have the ability to learn about the first electronic digital computer like never
before.

Our project reflects the values, practices, and aims of the cultural groups it affects positively. It
furthers the education abilities of professors and allows students a chance to physically learn about
computing. It also enhances the computer hobbyist community’s understanding of the first
electronic digital computer.

Our ABC implementation project may have a negative impact on the environment. We are unsure
of the practices of the manufacturers of our components, and we may be indirectly harming the
environment by using their services. Our project will also increase the energy usage from
nonrenewable sources because it has to consume power to run.

Our project will not have any funding issues due to the somewhat low cost of components. We plan
to use two Android tablets in our design, which will consume the bulk of our budget. However, we
will target Android devices that are just powerful enough for our simple apps in order to save on
cost for us, and others who would like to build our ABC implementation on their own.

4.1.2 Prior Work/Solutions

There have been two projects in the past here at Iowa State University relating to the ABC. The two
projects are the original construction of the ABC by John Atanasoff and Clifford Berry, and the
reconstruction performed by a team of engineers led by John Gustafson in the 90s. The goal of the
reconstruction project was to create a 100% faithful reconstruction of the original ABC to prove that
it was a functional machine. The reconstruction team completed their goal in 1997.

 Our ABC Reconstruction Project 90s Reconstruction Project

Pros: ● Smaller scale
● We are did it all electronically
● Easier to debug with modern

tools
● Lower cost
● Faster development cycle
● Ability to use modern tools

like computer simulations

● Closer to the time period of the
original ABC construction

● Captures the spirit of the era in
physical form

● Greater historical accuracy in design
and components

Cons: ● Fewer people
● Lack of historical authenticity

in hardware
● May not fully represent the

constraints of the original
project

● Requires sourcing obsolete
components

● Increased risk of mechanical and
electrical failures

● Longer project timeline due to
complexity

Figure 4: Prior Works Compared to Our Project Pros/Cons Table

The following references outline the previous works that have been completed pertaining to the
ABC:

[1] A. Burks and A. W. Burks, “The First Electronic Computer: The Atanasoff Story.” Ann Arbor:
University of Michigan Press, 1988.

[2] J. Gustafson and C. Shorb, “The Atanasoff-Berry Computer In Operation,” YouTube,
https://www.youtube.com/watch?v=YyxGIbtMS9E&ab_channel=ComputerHistoryMuseum
(accessed Dec. 7, 2024).

[3] J. Gustafson, Reconstruction of the Atanasoff-Berry Computer,
http://www.johngustafson.net/pubs/pub57/ABCPaper.htm (accessed 2024).

4.1.3 Technical Complexity
Our design consists of multiple subsystems, such as the add-subtract mechanism, base converter,
memory drums, and our I/O solution. Each subsystem leverages distinct scientific, mathematical,
and engineering principles:

● Add-Subtract Mechanism: Implements binary arithmetic through modern logic gates
replicating the logic of the original ABC.

● Base Converter: Utilizes modern digital logic circuits and ICs to replicate the function of
the original ABC’s base converter circuit.

● Memory Drums: Simulates temporary data storage using modern memory technologies.
● I/O: Uses Android app interfaces for data input and output.

Our project includes challenging requirements that match industry standards. Our project must
replicate the ABC’s functionality using modern components while maintaining the spirit of the
original design. This requires not only technical ingenuity but also historical research and
adaptation. The use of modern ICs and Android apps introduces challenges in achieving functional
fidelity while adhering to industry standards. Utilizing the modified Gaussian elimination process

that the original ABC used further increases the complexity of math and algorithms used in our
project.

4.2 DESIGN EXPLORATION

4.2.1 Design Decisions

1. Input / Output
a. Input / Output corresponds to how we will receive the equations to compute from

the user (the original used physical punch cards), and how we will output the
results to the user (the original used a rotary dial mechanism.

b. We decided to use Android apps for base-10 input and base-2 input/output, and we
decided to use 7-segment displays for base-10 output. We made these decisions
because we do not have the resources to develop our own physical input/output
methods as the original did. These decisions have helped us to complete our
design. Re-creating the original’s input/output methods 100% faithfully would be
an entire project itself.

2. User Feedback
a. User Feedback corresponds to how we will show the computer’s calculations to the

user.
b. We decided to use LEDs to visualize the function of the machine. This will allow

others to understand how the machine works given that they have used our
resources to learn what the goal of each module is. This decision has helped us to
speed up our design by allowing us to see what the machine is doing.

3. Physical Layout
a. The physical layout corresponds to how we will be assembling our final design.

b. We decided to use breadboards and tablets attached to a large piece of plywood as
our final assembly. We originally planned on using PCBs in our final design,
however, towards the beginning of the second semester, we realized this goal was
unrealistic. This decision has helped us to develop a more complete version of our
recreation.

4.2.2 Ideation

Our project allows for open-ended conversations about design choices because we are
implementing modern technology with the Atanasoff-Berry Computer. Our most talked about
component in the project is how we will handle input and keep the user involved. The original
input for the computer was punch card-based, which was the first option we discussed. We want to
stay loyal to the original machine, so we sought out IBM punch card machines but struggled to find
any. Our second consideration was printing dots on a piece of a standard sheet of paper and
scanning the paper as the input. Relating to the previous consideration, our third consideration,
and a little bit far-fetched, was 3d printing a punch card based on the user's input. Our fourth idea
for the component was to generate a QR code or a PDF that our machine could read. Our fifth and
final option is using tablets as input. We arrived at this idea because it is feasible for our team to
program a punch card app based on the original machine. This way, we could also stick with our
main idea of visualizing the machine's operation.

4.2.3 Decision-Making and Trade-Off

Figure 5: Weighted Decision Matrix

The above matrix shows how we came to the conclusion of using tablets for punch cards.
Competency refers to how it relates to our team's skill set. Cost refers to the cost required to adopt
the new idea. Viability determines if the idea is applicable in real life. Desirability refers to how the
user accepts and interacts with the new idea. Alignment refers to how the idea aligns with our
project strategy. A lower total score is in our better interest and tablets align with that score.

4.3 PROPOSED DESIGN

4.3.1 Overview

At its core, our design strives to strike an adequate balance between remaining faithful to the
original ABC in spirit and function while also embracing certain aspects of modern computer
design developed within the most recent half century. While a more modern design may prove
easier to implement with modern technology and more understandable by those familiar with
modern components, a design too modern in its approach loses all historical connection to the
original machine, and thus the university itself. Therefore, we have opted to make the following
design decisions in regards to the original machine’s design as follows:

1. Modified Gaussian Algorithm - Since the machine was designed to solve systems of linear
equations with only addition and subtraction operations, the original device built by Dr.
Atanasoff and Clifford Berry used a modified version of the standard Gaussian elimination
process for solving linear systems. In our design, we have opted to make use of this same
algorithm as well, limiting our machine to only using addition and subtraction in the
process.

2. Serialized Computation - The original ABC, with its data stored on rotating drums of
capacitors, performed all of its computations in a serialized fashion starting with the
least-significant bit of each number. This is markedly different from how modern
computers function, however, we have decided to preserve this characteristic of the old
machine for that very purpose as it maintains the novelty of our design when compared to
modern systems.

3. Excess Human Interaction - With modern computers, there exist many different forms of
automation that carry out different tasks or computations without human involvement,
and while the original ABC had some autonomous actions itself, the steps for using the
ABC to solve systems of equations still involved a great deal of human interaction due to its
limited technological capabilities. Therefore, we have opted to retain many of these such

interactions, as opposed to automating them away, as we believe they are vital to the overall
spirit of using the machine as its predecessor was also used.

Figure 6: Our ABC Design Block Diagram

With respect to these three fundamental design decisions to preserve our historical connection to
the ABC, the rest of our design consisted of more modern aspects in somewhat varying degrees.
Figure 6 contains a block diagram of all the core components of the original machine that we
sought to implement with modern technology. Each of these components were developed first by
analyzing how the component functioned in the original machine through extensive research, then
creating a modern equivalent via digital logic circuits and verilog code in Quartus Prime for
simulation, and finally implemented with real devices in a few key ways. Most commonly,
components such as the KA and CA drums, the Add-Subtract Mechanism, and the Control were
done via Transistor-Transistor Logic (TTL) integrated circuits on breadboards, while the data input
modules such as the Base-10 Input and Base-2 Input were realized with the help of some custom
Android software in communication with a handful of ESP32 microcontroller boards.

4.3.2 Detailed Design and Visual

To highlight our design and both its similarities and differences to the original ABC, this section
will focus on diving into the details of each component, how it functioned in the original machine,
and how it was simulated using digital logic circuits in Quartus Prime.

Timing Drum

Figure 7: Timing Drum Digital Circuit

Core to the ABC’s hybrid mechanical and electrical design was a set of four rotating drums that all
spun on the same axle. The two largest of these drums were the KA and CA drums, and these drums
stored the coefficients of two linear equations, one on each drum, for computation as part of the
larger system. Rotating with these two, there existed a decimal to binary conversion drum that
served to convert decimal inputs into the machine into their binary equivalents, and finally, a
timing drum that provided a series of timing signals at different points in the rotation shared by all
of these drums. These drums, minus the timing drum, rotated through 6o different 6° positions
along the drum’s surface with the first 50 such positions being populated with capacitors for data
storage while the last 10 remained blank to allow the machine time to switch control signals.

To replicate this rotational motion of the drums in a modern sense while also providing the same
signals as the timing drum, we designed the circuit in Figure 7 as a general timing drum that
consists of two four-bit binary counters alongside a memory chip. These counters count through
the 60 different positions of the drums and feed those bits as an address into an EEPROM that
outputs pre-programed signals at each necessary position. Here it is important to note that this
module also contains a flip-flop to divide the clock in half and only count every other clock cycle.
This will be explained later in the next section.

Memory Drums and ASM Muxes

Figure 8: Memory Drums and ASM Muxes Digital Circuits

As explained previously, the drums featured 50 bit positions that were read from sequentially, and
by making use of the drum’s rotation, these bit positions were also able to be written to at the same
time another was read, provided the writing occurred one position later in the drum’s rotation. This
formed the core computational loop for the original machine as the data would be read from the
memory drums, passed through the Adder-Subtractor Modules (ASMs), and then written back to
the CA drums specifically to store the result.

The circuit above implements the same idea by using two SRAM chips to serve as the memory
drums. These chips take a six-bit address from the timing module that represents the rotational
position of the drum, and then is selectively read from and written to at each address on two
different clock cycles. While not a perfect representation of the simultaneous reading and writing
done by the original machine, we believe that this process can approximate its behavior as best as
possible given the modern tools available. The data from these RAM chips are then passed through
a few MUXes that determine the inputs into the ASMs, while the data for writing back comes
through two I/O buffers to maintain data integrity. Finally, since the original design also features a
shifting mechanism for the KA drum, that RAM's address can be slightly altered via a selection
between the same address as the other memory drum, or the next address in the rotation to achieve
a rightward shift.

Punch Card Input and Output

Figure 9: Punch Card Input and Output Circuit

As a product of the time period in which the original ABC was built, all of the machine’s data entry
was done via punched cards in one of two formats. Firstly, using the standard IBM punch cards of
the time, a series of decimal numbers could be entered into the machine that were then converted
into binary for computation. Secondly, Atanasoff and Berry also developed their own method of
punching cards directly from the binary numbers that the machine was capable of both reading and
writing.

In the Quartus simulations performed for our digital logic based design, these punch cards were
merely simulated via a verilog script that would output the necessary data for both types of punch
cards used. More information on the Android software and microcontroller implementations of
these punch cards can be found in section 6.

Decimal to Binary Drum

Figure 10: Base Conversion Circuit

As mentioned previously, one of the key drums contained within Dr. Atanasoff’s device was a drum
dedicated to converting decimal numbers into their binary equivalents. With the help of a punch
card reader, this drum effectively contained a binary lookup table of all the digits from one to nine
in their binary form, along with the binary forms of each of those digits up to the 15th decade (1, 10,
100, 1000, etc.). Reading a number from a base 10 punch card then consisted of first reading the
most significant digit, finding the corresponding ring of pegs on the conversion drum, and then
adding that number with zero and storing the result on the CA drum. Each subsequent conversion
was then added to the previous results to get the full binary representation of the decimal number.
Since each base 10 punch card could contain up to five coefficients, the drum was capable of
converting all these numbers at the same time in a parallel fashion.

For our design, we chose to implement the binary lookup table with an EEPROM chip that could be
pre-programed with the proper values across a determined encoding scheme for its address. The
four most significant digits of the EEPROM’s address were reserved for the specific decimal digit
being converted, then the next four digits were used to represent the decade scaling factor as a
power of 10, and finally the last six bits were set as the same rotational address used for the memory
drums. Our design contains four of these EEPROMs to emulate the parallelism demonstrated by the
original machine for this process, albeit at a slightly smaller scale.

Adder-Subtractor Mechanisms

Figure 11: ASM Circuit

Consisting of seven dual triode vacuum tube devices, the ASMs within the original machine were
responsible for both the addition and subtraction computations that the machine’s algorithm
required. While not particularly well versed in the intricacies of vacuum tube logic circuits, our
research was successful in uncovering a recreation of these circuits using modern digital logic gates,
which we were able to modify slightly to get the design above. It is important to note that both this
circuit and the original one are capable of handling two’s complement representations of negative
numbers, which means that both designs are capable of performing computations with respect to
signed numbers.

Carry Drum

Figure 12: Carry Drum Circuit

While the main four drums of the ABC all shared the same axis of rotation, there existed one final
drum within the machine that rotated separately from these four. This drum, which was coupled
with yet rotated faster than the other drums, was used to store the carry of each subsequent
computation for use in the next addition or subtraction operation. As mentioned before, the
operations done within this machine were performed serially, meaning that each computation
started with the least significant bit of two numbers and propagated on up through to the most
significant bit of the two numbers, and if a carry were computed at any stage at or between, it
would be stored on this drum for the next operation concerning the next bits in the two numbers.

To realize this within our design, we opted to make use of a register to store the carries for each
computation which would be controlled by the same signals controlling the reading from and
writing to the memory chips. In an effort to synchronize the timing of these carries with both the
sums and the data from the KA drum, two additional registers were used despite them not being
fully represented in the original machine. This deviation is again due to some non ideal properties
of modern logic circuits that do not lend themselves well to this type of serialized design.

4.3.3 Functionality

Our design is intended to solve systems of linear algebra equations that are taken from the user’s
input. The equations that the user inputs will be translated onto a virtual punch card, and then be
converted to binary. Once the equation is in its binary form, the user uses the ABC to solve for the
unknown variables present in the equation by utilizing adders, memory drums, and base-2 punch
card tablets to perform the Gaussian elimination algorithm. Once the equation has been solved, the
user can output the results onto an array of 7-segment displays.

Figure 13: Functional Flow of Our ABC Recreation

4.3.4 Areas of Challenge

We faced a significant amount of challenges in completing our design. Our biggest challenge was
finding enough information on the machine to feel comfortable calling our design a faithful
reconstruction. Another challenge we faced was actually designing our machine based on the
information we could find. And another big challenge we faced was building our design on
breadboards.

We overcame our challenge of finding enough information to feel comfortable calling our design a
faithful reconstruction by doing copious amounts of research. We were eventually able to find a few
key primary resources in legal documents, and design diagrams and descriptions from the library.

Actually designing our machine was a huge milestone in our project progress. Using the primary
diagrams and the descriptions we did have made it challenging to come up with a design. The ABC
works entirely in parallel, so building a full-fledged recreation would take way too many chips for
our project. We decided to build a mini version that could handle equations with 4 coefficients.

We are currently facing the challenge of building our design on breadboards. Bugs are easy to come
by and meticulously placing each wire takes a lot of time. We are actively mitigating this challenge
by pouring tons of man-hours into this step. Overcoming all of these challenges was not easy, but it
has helped us to get to a good spot in our implementation. No matter what, we will have completed
something we are proud of.

4.4 TECHNOLOGY CONSIDERATIONS

1. Integrated Circuits (ICs)

Strengths: Integrated circuits offer a compact, reliable, and energy-efficient solution compared to
the vacuum tubes used in the original ABC. ICs allow us to implement complex logic functions
within a smaller physical footprint, making the design more feasible and scalable for modern
educational use.

Weaknesses: Using ICs, while efficient, moves away from the original design's reliance on discrete
vacuum tube circuits. This departure sacrifices some historical accuracy in exchange for practicality,
as vacuum tubes are difficult to source and maintain.

Trade-Offs: We opted for ICs due to the reduced power requirements and simplified design process.
Additionally, ICs enable us to achieve the desired computational logic without the extensive space
and cooling needs of vacuum tubes, making the ABC replication more manageable and
user-friendly.

2. Android Tablets

Strengths: Android tablets provide a versatile, interactive interface for both input and output, which
simplifies user engagement and feedback. The use of tablets allows us to simulate the punch card
system for input and visualize binary data transformations, which is crucial for educational clarity.

Weaknesses: While convenient, tablets are not a true reflection of the original punch card-based
input system, which may detract from the historical authenticity of the replication. Furthermore,
tablets require software development to emulate punch card functionality, adding complexity to the
project.

Trade-Offs: Tablets were selected due to their accessibility, ease of programming, and ability to
simulate various forms of input and output. This approach balances educational value with
practical usability, allowing users to interact with the system while maintaining an approximation of
the original input/output experience.

3. Breadboard and PCB Design

Strengths: Breadboards allow for easy prototyping and testing, enabling us to validate circuit
designs before creating the final breadboard implementations.

Weaknesses: Breadboards are limited in terms of space and connection stability, which can
complicate complex circuits.

Trade-offs: We are using breadboards for initial prototyping, allowing us to refine the circuit design.
Once designs are finalized, we will implement them fully on breadboards. Using breadboards is
faster and easier to debug then PCBs.

5. Testing

5.1 UNIT TESTING

The individual components of our design were each tested separately. The design of our
components were tested early in the design stage using programs to simulate digital logic. After
finishing the design, we built the components on a breadboard and tested the design physically by
using LEDs and a multimeter to measure important voltages not represented by LEDs. After
ensuring our design worked, we finalized the implementation on our interconnected breadboard
system.

5.2 INTERFACE TESTING

Our design features many different interfaces that include many of the individual modules that
make up the machine. While our unit testing ensured that each module works by itself, we
combined certain modules together to cover key interfaces, like machine input/output, data
conversion and storage, and finally, computation. Once we passed our unit testing, we then moved
on to implementing each of these key interfaces by stringing together our modules and ensuring
they function as expected. Android interfaces were tested using our ESP32s to ensure that correct
data was being transferred between our machine and apps.

5.3 INTEGRATION TESTING

From our requirements, we needed to ensure that the machine can perform all the same functions
as the original ABC while taking input and output in an analogous manner. Thus, the primary
integration path for us is to take in base ten input, convert it into base-2, store it in the machine’s
memory, perform one computational step, and then output the base-2 data for later use. The
secondary integration path consists of many of the same steps, however, the input needs to come in
as base-2, so no base conversion will be necessary. This testing had to wait until we completed our
designs and started combining breadboard modules.

5.4 SYSTEM TESTING

All of our different stages of testing were necessary to verify the overall system performance and
ensure that we met all of our requirements. Specifically, we needed to run unit tests for every
module we created, interface tests on the three different key operations for our machine, and finally,
some higher-level integration tests that make sure the machine can fully complete a computation
step. Then we used those steps to prove that our design can fully solve a system of linear equations.

5.5 REGRESSION TESTING

We implemented some regression testing by making sure that any new hardware design worked
properly according to our unit tests on breadboards first. Then, by making sure all designs were
breadboarded first, we could ensure that they would not break any old functionality.

5.6 ACCEPTANCE TESTING
We demonstrated our meeting of design requirements by making sure we tested as often and as
thoroughly as we can within the presence of our advisor so that he too could verify our findings. By
actively involving our advisor/client in the design and verification process, we hope to further
deliver a useful educational aid to him and future students.

5.7 USER TESTING
With the current state of our implementation, we have been unable to complete user testing. If we
were able to complete user testing, we would have given a demonstration of our machine and note
down the users’ reactions. Afterwards, we would have the user answer some questions to ensure
they were able to understand how the machine worked and get any recommendations.

5.8 RESULTS

The results of our testing were mostly successful. Our unit testing stage was very successful in
ensuring our designs worked. The interface testing proved successful in that our Android apps
worked exactly as planned. We are still working through the integration and system testing phases.
At this point, our design is very nearly fully implemented on breadboards. We are slowly working
through bugs in the system that we are finding due to our system testing. We have worked very
closely with our advisor throughout all stages of our design, as a result, we have been performing
acceptance testing during our entire project.

6. Implementation
Android Apps/ESP32s:

Figure 14: Android Base-10 Punch Card App

The Android base-10 punch card app is for inputting base-10 data into the machine. The data from
the app is uploaded to an ESP32 that turns it into readable base-2 for our machine. Our system then
takes this data and stores it into RAM.

Figure 15: Android Base-2 Write App

The Android base-2 write app is for receiving base-2 data from our machine. Because our
reconstruction can only hold two equations at a time, you need to be able to store intermediary
computation equations elsewhere. The original used letter-sized paper, and ours uses Android apps.
Our machine sends the base-2 data into an ESP32, and the ESP32 transmits that data to the app.
Once all of the data is received, the write app sends the page to the read app.

Figure 16: Android Base-2 Read App

The Android base-2 read app is for uploading data back into our machine. The data that is sent
from the write app appears as a new page on this app. The data from the read app can be uploaded
to an ESP32 that stores the data into the RAM of our machine. The read app also has several
quality-of-life options. Users can flip the bits from left to right to make it appear in a readable order.
The user can also switch between three modes: dots, 1’s and 0’s, and base-10. This allows the user to
easily read the data as they please. When the pages are no longer needed, the user is able to reset
the app back to no pages.

The Android apps, in conjunction with ESP32s, work well and match our final design as planned.

ABC:

Figure 17: Clock Generator

In moving our design from Quartus simulation to real components on a breadboard, it was
necessary for us to first design a clock generator circuit that could provide both an automatic clock
with a variable frequency and a manual clock for debugging. Using a 2MHz full can crystal
oscillator alongside two clock divider chips that each provide up to 12 outputs of different speeds, a
simple adjustable clock circuit was created. Then, by using a button debounced with a register chip,
a manual clock was created, and either can be selected via the switch in the middle.

Figure 18: Timing Drum

As above, the timing drum was realized with two, four-bit synchronous reset counters strung
together to create a six-bit counter that resets upon reaching the 60th position. This six-bit address
is then passed into an EEPROM programmed to output a series of timing signals at each of the
addresses to control other parts of the circuit depending on the rotation position. Finally, the board
at the top of this module contains a four-bit down counter used when reading in decimal punch
cards to count through each of the decades from 14 down to 0.

Figure 19: Memory Drums

Here, the two RAM chips for the KA and CA drums are realized with an I/O buffer between them to
control the flow of data to and from the RAM chips. The board above the RAM chips contains three
multiplexers used to select different data inputs into the ASMs, while the board below calculates a
shifted address for the KA drum if a rightward shift is desired.

Figure 20: Base-2 Read/Write and Base-10 Write

These boards contain three separate ESP32 microcontroller development boards that control the
flow of data into and out of the machine for the punch cards. Since each punch card, both decimal
and binary, is being stored on Android tablets, the ESP32 devices provide a method of
communication between the tablets and the rest of the machine. The top board is responsible for
sending a binary punch card into the machine, while the middle board can read the binary data
from the machine to write a binary punch card. Finally, the bottom board is responsible for sending
digit data from decimal punch cards into the decimal to binary circuit for entry into the machine as
a binary number.

Figure 21: Decimal to Binary Drum

Taking the digit data from the decimal card reader board, the decade number from the four-bit
down counter, and finally the six-bit rotational position from the timing drum, the decimal to
binary drum computes the proper sequence of bits for converting decimal numbers into binary.
This computation is done via four parallel EEPROMS that all receive different digit data from the
decimal card reader, and connect into the machine via the ASM multiplexers as described before.

Figure 22: Add/Sub Mechanisms

Each of these boards contains the same digital circuit for performing addition and subtraction
operations between two numbers. These circuits are implemented according to the original vacuum
tube design converted into modern digital logic gates. While one input of each of these modules
always comes from the CA drum, the other can be selected via multiplexers to go between the KA
drum, the binary card reader, the decimal to binary drum, and a constant zero. The sum and carry
outputs are then stored in the carry drum for use on the next clock cycle.

Figure 23: Carry Drum

Finally, the carry drum, which in our implementation stores both the carry and the sum unlike the
original, contains a set of registers to hold the sum and carry data from the ASMs for use on the
next clock cycle when the sum will be written back to the CA drum while the carry will hold for the
next operation.

We are still working to complete the control system and 7-segment display base-10 output. We have
been working hard to fully complete our implementation. The reason that these subsystems are still
incomplete is the large amount of research we had to complete before being able to design our
system, and the amount of time it takes to build the circuits and debug any problems.

abc-emulator:
The abc-emulator is a digital scale model of the Original Atanasoff-Berry Computer written
completely in Java. Nothing spins or sparks like the real ABC capacitors and rotating drums.
Instead, Java objects hold states, and methods mimic the physical steps.

Figure 24: ABCGUI Frame

For the front-end of the simulation, we used Java Swing to recreate the control panel of the original
machine. The ABCGUI frame is a split pane layout that holds three panes. CardSelect pane - lists all
saved cards, click and push a button to load them. ControlPanel pane - contains the original push
buttons, switches, lights, and jumpers, with respective operations, that the original ABC had. The
OdometerPanel pane is a six-row by fifteen-column display that displays the value of the band in
decimal.

Core emulator back-end:

● Drum data
○ Has subclasses CA, KA, and Carry.
○ CA and KA have 30 bands by 50 bit boolean

matrix, with bitwise getter, setters, clears, and shift operations.
● Add/Sub Mechanism (ASM)

○ Contains boolean full-adder logic (addSubBit), with
band processing and equations loops matching
Stoytchev’s “Key Steps”

● Card I/O
○ Decimal, Binary, and Mask cards are all saved as csv

files. With Reader, Storage, and Punch classes for
each. Files are stored in auto-incrementing filenames
(dcardXX.csv, bcardXX.csv) and on-disk caching
under resources/… .

● Conversion Drum
○ Is a lookup table for Base10 Reading. Loads

lookup/convdrum.csv into a memory boolean and
performs the brush-offset lookup that translates
decimal digits into 50 bit binary boolean arrays.

How it matches the final design:

The objectives that were met in the abc-emulator implementation
include. Emulating CA, KA, Carry, and Conversion drums at the
bit level. The Drums mirror this with 30 by 50 MSB-LSB boolean
arrays. Implement Berry’s seven-step elimination algorithm. This
is fully coded in AddSubmechanism.operation. Punched cards and
allow re-loading. This is met with Decimal, Binary, and Mask
storages, reading and punching. Functional control panel is met
with the three UI panes. A part that wasn’t me was simulation of
drum rotation and timing. Was not implemented.

Features, functions, sub-systems that are implemented:

Bit accurate drums (CA, KA, Carry) have respective operations that
as a team we researched. The csv lookup to convert decimal to
binary. Full Add/Sub Mechanism that matches the original logic
Atanasoff used. Decimal, Binary, Mask cards. Three-pane Swing
GUI with live states. Enums and toggle logic for Switches and
Pushbuttons relating to the original machine.

Did not finish and why:

Accurate drum rotation was not met because it adds a large
amount of threading complexity. Also allowed us to focus on
low-level implementation.

6.1 DESIGN ANALYSIS

As stated before, the primary goal of our design was to provide an adequate balance between
staying authentic to the original design of the ABC and deviating from that in favor of modernity
and understandability. Specifically, we made three critical design decisions in favor of sticking with
the original design to preserve our connection to its legacy, and we believe that within the context
of those decisions, we have found a sufficient design and implementation.

We understand that parts of our design may seem inefficient or suboptimal when compared to
modern computing standards, however, we firmly believe that any more diversions away from Dr.
Atanasoff and Berry’s original design and in favor of efficiency or modern technology would
ultimately sacrifice too much of the historical and spiritual connection that our design is supposed
to have with its predecessor. To this aim, we believe that our design is rather successful.

7. Ethics and Professional Responsibility

7.1 AREAS OF PROFESSIONAL RESPONSIBILITY/CODES OF ETHICS

Area Definition Relevance to Project

Work
Competence

While working on the project we are
outputting high quality, integrity,
timeliness, and professional
competence.

Our skill sets covered the needs of our project.
With Electrical, Computer, and Software
Undergraduate Engineers populating our team, we
were able to work in areas of our competence.

Financial
Responsibility

Order parts that are needed to
complete our project.

Our implementation was mainly breadboarded and
software based. We ordered chips through ETG and
put our Amazon order through them. Our team
would go through a parts order after Friday meetings
to make sure we are getting what we need to build our
project. We only had one PCB order from JLCPCB to
create our Add-Sub Module. By sitting down with
each other and going through together we spent
money responsibly.

Communication
Honesty

Attend weekly meetings, communicate
through discord, and be honest
through work.

We met twice a week where we updated our weekly
report, filled out design documents, and took
meeting notes. All of our updates are truthful in
what we have done each week and the progress
we’ve made. We communicate fully with our
advisor and constantly update each other.

Health, Safety,
and Well-being

Reduce risks of safety, and health. If a member was sick we recommended staying home
and not forcing attendance in a meeting. We also used
best practices when breadboarding and implementing
other parts. By adhering to this area, we built
confidence in our project and reduced sick time.

Property
Ownership

Respect each other's ideas, and release
our project to the public.

Our final product will be released under a
permissive open-source license. We acknowledge
our own team’s contributions by printing names of
the student(s) on each PCB that they worked on.
We also have a team logo that will be printed on
each PCB.

Sustainability Use our school's resources. Our team ordered parts from China, through ETG.
That way, we stay under budget and get fast,
efficient PCBs and chips. We also placed Amazon
orders through the school to get parts for our final
design.

Social
Responsibility

Design an educational product that
provides learning.

To us, this means serving a societal purpose that
can inspire creativity in people interested in
computers.

Figure 26: Areas of Professional Responsibility and Their Relevance to Our Project

The area where our team performed well is Social Responsibility. One of our team's virtues is
staying faithful to the ABC’s original logic, just interpreted in a modern form. By staying true to this,
we created a meaningful product. We want people interested in computers and students in
computer-related degree programs to be able to easily understand how the first electronic computer
operated.

One area our team needs to improve on is Sustainability. We didn’t think heavily on optimization of
an algorithm because we're using an already existing one. Also, we ordered parts from China
because it’s fast and cheap. This is done because we’re under a time constraint and do not have the
luxury of spending a large amount of money.

7.2 FOUR PRINCIPLES

Area Description

Beneficence Our project respects the values of people in computer related fields and
people interested in computers. We reflect their values by attempting to stay
as faithful as we can to the original design.

Nonmaleficence Relating this area to the environment, we find some problems. We order parts
from China because they are cheap, but we’re not sure how friendly their
practices are to the environment. We don’t think twice about being supplied
PCBs from China.

Respect for
Autonomy

We are releasing our project under a permissive open-source license. This
allows people invested in the project to modify our project themselves on
their own account. This promotes creativity and allows for future teams to
learn and base on our project.

Justice With an Economic relation, we promote fairness by standardizing the parts
we order. We conversed with the other team that Stoytchev, our
advisor/client, is also supervising, and we standardized LED’s and other
wiring’s for our prototypes.

Figure 27: Broader Context Principle Pairs

An important pair is Beneficence-Global, Cultural, and Social. This is important because our team
wants to deliver a product that can be benefitted by students and anyone interested in computers.
We will ensure it by considering multiple perspectives by breaking down the basic principles of the
original ABC. A pair that is lacking is Nonmaleficence-Environmental. The main negative of this
pair is that we have little to zero control over this. We work under Iowa State and use the basics.
This is overcome in other areas because it’s so insignificant to our entire project.

7.3 VIRTUES
Team Virtues

● Collaboration
○ Ensures that team members work together, this helps each other’s strengths to

achieve a common goal. This promotes creativity by combining different
perspectives.

○ As a team we met twice a week and communicated fully through Discord. We
directed each other’s roles to each of our strengths in completing our project. By
doing so we were able to positively collaborate.

● Integrity
○ Integrity builds trust in our team and with our client. It ensures that decisions are

made ethically and that work is performed honestly and transparently.
● Adaptability

○ Adaptability allows our team to respond effectively to unexpected challenges, such
as changing project requirements, technical issues, or new insights gained during
prototyping.

8. Conclusions

8.1 SUMMARY OF PROGRESS

The team has developed a full design of the ABC re-construction and we have nearly implemented
the entire design. The Android apps used for input/output are finished and working. Most of the
machine’s parts, except for the control unit and 7-segment display output, are finished. We are still
working hard to fully complete our implementation before our presentation.

8.2 VALUE PROVIDED

Our design address’s our user needs and it fulfills all requirements that we set out to fulfill. In the
grand scheme of things, our design could be helpful for future students to understand how
computational logic works. It also provides an important historical understanding of how
computers became what they are today. The ABC being a simple computer makes it possible for
students to understand what it is doing. The LEDs visualizing each step are also a huge help to
understanding the inner-working of the computer.

8.3 NEXT STEPS

Our project could go in a lot of different ways from here. We would like to see another team take
our design and fully implement it on PCBs. This would greatly decrease the size of the
implementation and could even allow the team to develop a full-fledged 30 coefficient version of
the ABC. Another idea for future projects is to start developing the ABC 100% faithfully. This would
take multiple teams. For example, one team could develop the base-2 puncher and reader circuits
while another team develops the add-subtract mechanisms. We are proud to be the beginning of
what could be some great projects.

9. References
[1] A. Burks and A. W. Burks, “The First Electronic Computer: The Atanasoff Story.” Ann Arbor:

University of Michigan Press, 1988.

[2] IEEE Standard Test Access Port and Boundary-Scan Architecture, IEEE Std 1149.1-2001.

[3] IEEE Standard for Integrated Circuit (IC) Designer Metrics, IEEE Std 1481-2009.

[4] IEEE Standard for User Interface Elements in Power Control of Electronic Devices, IEEE Std
1621-2004.

[5] IEEE Standard for Environmental Assessment of Personal Computer Products, Including Laptop
Personal Computers, Desktop Personal Computers, and Monitors, IEEE Std 1680-2006.

[6] IEEE Standard for Floating-Point Arithmetic, IEEE Std 754-2019.

[7] J. Gustafson and C. Shorb, “The Atanasoff-Berry Computer In Operation,” YouTube,
https://www.youtube.com/watch?v=YyxGIbtMS9E&ab_channel=ComputerHistoryMuseum
(accessed 2024).

[8] J. Gustafson, Reconstruction of the Atanasoff-Berry Computer,
http://www.johngustafson.net/pubs/pub57/ABCPaper.htm (accessed 2024).

10. Appendices

Figure 28: Adder-Subtractor Module KiCad Schematic

Figure 29: Adder-Subtractor Module PCB Implementation Render

Figure 30: KiCad Schematic for the Adder-Subtractor Tester PCB

Figure 31: Adder-Subtractor Tester PCB Implementation Render

Figures 13-16 show the PCB designs that we created when we thought we were going to do a full PCB
implementation. The adder subtractor PCB was for adding and subtracting binary numbers. The
adder subtractor tester was specifically designed to test the adder subtractor PCBs using switches
and LEDs.

APPENDIX 1 - OPERATION MANUAL

Note: Our operation manual goes over the use of the abc-emulator Java simulation as our physical
implementation is not complete enough to fully use yet.

Legend:

Figure 32: Legend for abc-emulator Buttons and Switches

Control Panel UI:

Figure 33: abc-emulator Control Panel

Reading Base-10 Cards:

1. Turn power switch MS on.
2. Set switch SW7 so that inputs to ASM’s are connected to card reader.
3. Set switch SW8 so that add-subtract relay is controlled by card (rather than by sensing

overdrafts).
4. Select ADD with pushbutton PB1, by monitoring the lights L2 and L3.

5. Select field on CA into which card is read by closing one of the six switches SW1-SW6.
6. Clear CA and KA with switches SW11 and SW12 respectively.
7. Plase first Base10 card in reader (Equation to be eliminated goes in first).
8. Press button PB2 to cause base-10 card reader to GO.
9. For more than five coefficients, select new field by closing the next switch SW1-SW6, add a

new card, and repeat until all coefficients of one equation are in CA.
10. Transfer contents of CA to KA by pressing GO button PB3.
11. Repeat above to place all coefficients of second equation on CA.

Computing:

12. Set switch SW7 so that inputs to ASM’s are connected to KA.
13. Select coefficient to be eliminated by selecting checkbox ZD .
14. Set switch SW8 so that add-subtract relay will be switched by overdrafts.
15. With pushbutton PB1, set add-subtract control to ADD if signs of coefficients to be

eliminated were alike - set to subtract if they are the same.
16. Press Go Compute button PB6 (computation begins on next cycle and is auto-matically

terminated when equation is reduced to zero.)
17. Press pushbutton PB4 to punch contents of CA (the answer) onto a base-2 card.

Base-2 Reading:

18. Return SW7 to “card read” position.
19. Place machine in ADD by pressing PB1 if necessary.
20. Place first card in Base-2 reading rack.
21. Clear CA and KA by pressing SW11 and SW12 respectively (optional step).
22. Read first card into CA by pressing button PB5.
23. Transfer contents of CA to KA by pressing button PB3.
24. Clear CA by pressing SW11.
25. Place second card in Base-2 reading rack.
26. Read second card into CA by pressing button PB5.

Base-10 Reading:

27. Select checkbox SD at coefficient location to be read.
28. Check sign of number using L7 and L8 for positive and negative number indicator

(respectively).
29. Place machine in SUBTRACT if number to be read is positive (in ADD if negative) by means

of button PB1.
30. Open switch SW10 to connect only powers of 10 brush in base-10 card reader to ASM,

making sure no IBM card has been left in base-10 card reader.
31. Select mask card for coefficient to be read.
32. Set switch SW7 to card read position.
33. Set switch SW8 to sense overdrafts.
34. Press the Compute “Go” button PB6.
35. Read base-10 number on odometer panel after computation is complete.

Figure 34: Odometer display for reading Base-10

APPENDIX 2 - INITIAL VERSION OF DESIGN

Initially, we planned on using printed circuit boards for our final implementation. This was
scrapped due to there not being enough time for us to achieve this goal. This was partly due to the
fact that researching and creating a design took significantly longer than expected.

APPENDIX 3 - OTHER CONSIDERATIONS

● The reconstruction team from the 90s did not leave much of anything, except for a small
demo video, for us to use in terms of resources. We aren’t even sure if it worked exactly like
the original.

● Our best sources were legal documents from the original.

APPENDIX 4 - CODE

GitHub Repo: https://github.com/phurd22/sdmay25-29

https://github.com/phurd22/sdmay25-29

APPENDIX 5 - TEAM CONTRACT

TEAM MEMBERS

● Peter Hurd
● Connor Hand
● Zach Scurlock
● Noah Butler
● William Mayer

REQUIRED SKILL SETS FOR YOUR PROJECT

The required engineering students for the implementation of ABC with modern technology are:
Electrical, Computer, and Software. Some other special skills needed include experience with
breadboards, familiarity with computer design principles, and programming skills.

SKILL SETS COVERED BY THE TEAM

● Electrical Engineering
○ Peter Hurd

● Computer Engineering
○ Connor Hand
○ Zach Scurlock
○ Noah Butler

● Software Engineering
○ William Mayer

Peter Hurd, Connor Hand, Zach Scurlock, and Noah Butler all have prior experience with
breadboards. William Mayer has programming skills. All team members are familiar with computer
design principles.

PROJECT MANAGEMENT STYLE ADOPTED BY THE TEAM

Our team uses a mix of both Waterfall and Agile styles for our project management. As a team, we
defined our project's scope, objectives, and requirements. We set milestones with a project timeline.
From there, we broke down our work into short sprints, focusing on specific tasks. We often met
and gathered feedback from our advisor to make flexible adjustments.

INDIVIDUAL PROJECT MANAGEMENT ROLES

1. Project Sponsor
a. Iowa State University

2. Project Manager
a. Alexander Stoytchev

3. Project Team Members
a. Connor Hand

i. Client Interaction and Team Organization
b. Zach Scurlock

mailto:alexs@iastate.edu

i. Testing and Individual Component Design
c. Peter Hurd

i. Testing and Individual Component Design / Budget Handling
d. William Mayer

i. Meeting Tracking and Note-Taking
e. Noah Butler

i. Testing and Individual Component Design

TEAM CONTRACT

Team Members:

1) Connor Hand 2) Zach Scurlock

3) Peter Hurd 4) Noah Butler

5) William Mayer

Team Procedures

1. Day, time, and location for regular team meetings:

With advisor - Thursday at 1:30 PM Senior Design Rm in Coover

Without advisor - Wednesday at 3:30 PM Senior Design Rm in Coover

2. Preferred method of communication updates, reminders, issues, and scheduling:

Discord - Outlook

3. Decision-making policy:

Majority Vote

4. Procedures for record keeping:

William records notes - Shared in Google Drive and Notes channel

Participation Expectations

1. Expected individual attendance, punctuality, and participation at all team meetings:

All individuals should be attending at least 90% of meetings. We understand some situations are
unavoidable. Team members should participate in meetings by sharing what they have done since
the last meeting and by helping with the project.

2. Expected level of responsibility for fulfilling team assignments, timelines, and deadlines:

Assignments: Get done before the due date

 Timelines: Try your best for timelines

 Deadlines: Finish up before deadlines

3. Expected level of communication with other team members:

Team members should respond to one another within the same day. Team members should be
sharing important information with each other or asking each other questions over Discord. Expect
responses at a reasonable time of day.

4. Expected level of commitment to team decisions and tasks:

Complete other school work but give full commitment when possible.

Leadership

1. Leadership roles for each team member:

Client Interaction / Team Organization: Connor Hand

Meeting Time Tracking / Note Taking: William Mayer

Testing / Individual Component Design: Noah Butler, Zachary Scurlock, Peter Hurd

Budget Handling: Peter Hurd

2. Strategies for supporting and guiding the work of all team members:

Constant communication

Ask for help whenever

Rubber Ducky theory

3. Strategies for recognizing the contributions of all team members:

Time management

Have responsibility for team actions

Talk about what we did individually at each meeting

Collaboration and Inclusion

1. Describe the skills, expertise, and unique perspectives each team member brings to the

team.

Connor Hand: Hardware design, some electronic circuits, computer theory

Zachary Scurlock: Hardware design, computer theory, software design

Peter Hurd: Electronic circuits, computer theory

William Mayer: Software concepts, multiple coding languages

Noah Butler: Hardware design, software design

2. Strategies for encouraging and supporting contributions and ideas from all team
members:

We are using Discord for our communication so we can put our ideas in our Discord server, where
they will be forever and everyone can see. We can also talk about our contributions and ideas
during our meetings.

3. Procedures for identifying and resolving collaboration or inclusion issues:

By having an open-minded conversation. We all agree that our meetings are a safe space to talk
about any problems we have within the team.

Goal-Setting, Planning, and Execution

1. Team goals for this semester:

Develop a functional, final implementation of our design.

2. Strategies for planning and assigning individual and teamwork:

Determine work to be done at meetings and create a list of items that need to be completed. We
can take the items that we want to do or the team has agreed on and assign our names to them.

3. Strategies for keeping on task:

Meet consistently and communicate constantly. Create personal goals to spend a certain amount of
time on our project individually.

Consequences for Not Adhering to Team Contract

Open-minded conversations and heavy communication if infractions repeat. Communication with
Stoytchev on specifics of infractions. If infractions continue after talking about it with the team, the
rest of the team and Stoytchev will determine the next steps for the person committing the
infractions.

a) I participated in formulating the standards, roles, and procedures as stated in this contract.

b) I understand that I am obligated to abide by these terms and conditions.

c) I understand that if I do not abide by these terms and conditions, I will suffer the

consequences as stated in this contract.

1) Connor Hand DATE 5/4/2025

2) Zachary Scurlock DATE 5/4/2025

3) William Mayer DATE 5/4/2025

4) Noah Butler DATE 5/4/2025

5) Peter Hurd DATE 5/4/2025

	1.Introduction
	1.1.PROBLEM STATEMENT
	1.2.INTENDED USERS

	
	2.Requirements, Constraints, And Standards
	2.1.REQUIREMENTS & CONSTRAINTS
	2.2.ENGINEERING STANDARDS

	
	3. Project Plan
	3.1 PROJECT MANAGEMENT/TRACKING PROCEDURES
	3.2 TASK DECOMPOSITION
	3.3 PROJECT PROPOSED MILESTONES, METRICS, AND EVALUATION CRITERIA
	3.4 PROJECT TIMELINE/SCHEDULE
	
	3.5 RISKS AND RISK MANAGEMENT/MITIGATION
	3.6 PERSONNEL EFFORT REQUIREMENTS
	3.7 OTHER RESOURCE REQUIREMENTS

	
	4. Design
	4.1 DESIGN CONTEXT
	4.1.1 Broader Context
	4.1.2 Prior Work/Solutions
	4.1.3 Technical Complexity

	4.2 DESIGN EXPLORATION
	4.2.1 Design Decisions
	4.2.2 Ideation
	4.2.3 Decision-Making and Trade-Off

	4.3PROPOSED DESIGN
	4.3.1 Overview
	4.3.2 Detailed Design and Visual
	
	4.3.3 Functionality
	4.3.4 Areas of Challenge

	4.4 TECHNOLOGY CONSIDERATIONS

	
	
	
	5. Testing
	5.1 UNIT TESTING
	5.2 INTERFACE TESTING
	5.3INTEGRATION TESTING
	5.4SYSTEM TESTING
	5.5REGRESSION TESTING
	5.6ACCEPTANCE TESTING
	5.7USER TESTING
	5.8RESULTS

	
	6. Implementation
	
	
	6.1 DESIGN ANALYSIS

	
	7. Ethics and Professional Responsibility
	7.1AREAS OF PROFESSIONAL RESPONSIBILITY/CODES OF ETHICS
	7.2 FOUR PRINCIPLES
	
	7.3 VIRTUES

	
	8. Conclusions
	8.1 SUMMARY OF PROGRESS
	8.2 VALUE PROVIDED
	8.3 NEXT STEPS

	
	9. References
	
	10. Appendices
	
	APPENDIX 1 - OPERATION MANUAL
	APPENDIX 2 - INITIAL VERSION OF DESIGN
	APPENDIX 3 - OTHER CONSIDERATIONS
	APPENDIX 4 - CODE
	
	APPENDIX 5 - TEAM CONTRACT
	TEAM MEMBERS
	REQUIRED SKILL SETS FOR YOUR PROJECT
	SKILL SETS COVERED BY THE TEAM
	PROJECT MANAGEMENT STYLE ADOPTED BY THE TEAM
	INDIVIDUAL PROJECT MANAGEMENT ROLES
	TEAM CONTRACT

